Nature综述整合组学分析护航健康,推

导读

KonradJ.Karczewski,andMichaelP.Snyder撰写的关于整合多组学在疾病研究中的应用一文《Integrativeomicsforhealthanddisease》,于年2月26日发表在naturereviewsgenetics(Nature系列综述,IF:41.)。

对于发病原因复杂的疾病通常很难用单一的理论模式进行全面表述,多组学技术通过整合生物系统中诸多相互联系和作用的组分来研究复杂生物过程的机制,从而为更加准确地对疾病进行阐述提供了可能性。同时作者也阐述了多组学技术在临床应用中存在的问题和挑战,并且整合组学正推动着真正的精准医学时代的来临。

摘要

多种组学技术(如基因组、转录组、蛋白质组和代谢组)的进步已在极其详尽的分子水平促使个体化医疗成为可能。尽管每个单独的组学技术都促进了医学的进步并已进入临床实践,然而单个技术难以捕捉大多数人类疾病的整体复杂性。整合多组学技术正成为综合研究生物和疾病的新方法。本文讨论了多组学数据的整合,以及将其应用于人类健康和疾病研究的可能性。我们提供了一些多组学数据整合的例子,用以理解、诊断并监测相应疾病的治疗,包括罕见病、常见病以及癌症和移植生物学。最后我们讨论了多组学技术在临床应用上面临的技术和其它方面的挑战。

生信老司机以中心法则为主线讲解组学技术的应用和生信分析心得

名词解释

1.可操作性(Actionability):基础研究的突破能用于改善某种疾病治疗的医学实践。

2.孟德尔遗传病(Mendeliandiseases):由遵循孟德尔遗传规律(如显性或者隐性)的单个位点或基因引起的疾病。

3.遗传病因学(Geneticaetiology):研究引起特定疾病的遗传因素的学科。

4.表达数量性状位点(Expressionquantitativetraitloci(eQTLs)):诱发基因表达显著变化的遗传变异。

5.遗传力(Heritability):性状的表型变化可归因于加性遗传变异的比例。

6.DNA酶超敏感性(DNasehypersensitivity):根据染色质被DNA酶I切割的敏感性来度量染色质的开放程度。

7.结构变异(Structuralvariants):1Kb或者更长区域的一类遗传变异,包括拷贝数重复、插入、缺失以及易位和倒位。

8.纵向数据(Longitudinaldata):在一段时间内,从较大的群体中对同一受试者的重复观测结果的集合。

高通量测序及其它大规模并行分析技术(如质谱)成本的快速下降使他们能够广泛应用于临床研究与实践。外显子组和基因组测序技术已被用于疾病的辅助诊断(尤其是罕见病的诊断)、指导癌症的治疗和预后以及建立健康个体的疾病预测模型等。很多科研人员和公司正在致力于开发全基因组范围内的遗传、基因表达和其它组学数据(如微生物组,BOX1)做为疾病诊断的标记物(详细见TABLE1)。例如全基因组关联分析(GWAS)已经成功地鉴定出了疾病的风险位点。然而多数情况下,一些疾病相关的驱动变异或驱动基因仍未被鉴定出来。在此情况下,其它组学技术可以在精准病理生理学上对这些疾病提供有效检测。有些组学技术如蛋白质组学可以产生更接近于生物表型的数据,但由于昂贵且不够深入全面,在用于查明病因上仍有很多挑战。因此,几乎没有一种单独的技术能够解释导致人类疾病的分子事件的复杂性。测序发展史:年的风雨历程

Box1

方框1.在多组学技术中引入微生物组

微生物组与许多人类常见疾病有关,但由于不确定其是因是果,使得问题变得更加复杂。基因组数据中,致病性关系简单明确,通常是DNA影响表型(除了癌症导致的突变发生外)。但解密微生物组成与疾病的因果关系却比较困难这些研究需要昂贵的纵向或介入性实验,并且小鼠模型无法全面模拟人体生物学。尽管如此,患有诸如炎症性肠病、II型糖尿病和肥胖症等疾病的患者确实具有与健康人群显著不同的微生物组成。此外,微生物组对免疫功能有强烈影响,在动物模型中被认为是疾病发生的潜在因素。随着对微生物组理解的深入,综合分析该组学及其它组学技术可以加深对人类疾病的理解。最近研究显示,人类基因序列影响整个肠道微生物群的组成,为某些疾病的相关遗传位点提出新的致病解释。此外,人类遗传物质和微生物组之间的互作会影响疾病,同时整合这两种图谱的研究会很有价值。宿主与其微生物组之间的代谢信号互作已成为一个热门的研究领域,越来越多的证据表明来自肠道细菌的代谢物可能在人类疾病中起作用。因此,综合分析基因组、代谢组、微生物组及其它组学可能有助于健康管理和疾病诊治。

表1:整合组学的数据类型

CPTAC,ClinicalProteomicTumourAnalysisConsortium;EDRN,EarlyDetectionResearchNetwork;ENCODE,EncyclopediaofDNAElements;GEUVADIS,GeneticEuropeanVariationinHealthandDisease;gnomAD,GenomeAggregationDatabase;GTEx,Genotype–TissueExpression;GWAS,genome-wideassociationstudy.

理想情况下,不同的组学技术可以结合起来,用以辅助疾病诊断并全面了解人类的表型和疾病。然而多组学数据的分析引入了新的信息和解读上的挑战。尤其需要新颖的分析和统计方法来将不同类型的数据集整合和质量控制指标的标准化。此外该领域必须重视分子事件的解读、基础发现的可操作性以及是否可以用于指导治疗和临床护理。

下面将介绍整合组学如何通过帮助健康管理及疾病的诊断治疗来影响医学。我们讨论了罕见的孟德尔遗传病如肌营养不良症和更为常见的疾病如自闭症和阿尔茨海默病的临床前和临床应用。此外,我们还研究了多层次组学技术在癌症诊断和治疗中的应用。我们始终都在讨论综合多个数据集的优势,例如多种技术优势互补,有助于深入了解疾病的机制。此外,还讨论了目前的技术方法和将多个来源的数据进行最优组合和解读的挑战,以及将其成功应用于阐明人类疾病机制的一些令人鼓舞的例子。

1DissectingMendeliandisease

解析孟德尔遗传病

在北美,大约10%的住院儿童和20%的婴儿的死亡可归因于孟德尔遗传病。多数情况下,临床医生和病人家属会借助外显子组及基因组测序技术找到孟德尔遗传病的相关致病突变。但是由于疾病类型和实验设计等因素,这一新技术在靶向测序未能找到致病机理的病例中只有25-50%获得了成功。对于主要由隐性变异导致的疾病,只有当此致病变异已被收录在疾病变异数据库(如Clinvar)中或者在一个已知疾病基因上发生了蛋白质截断变异(如提前终止,移码或关键剪接位点变异)时,这种检测技术才最为有效。然而,有时变异的影响可能比较微弱(例如可诱发新的隐性剪接位点的内含子变异),或由于体细胞嵌合导致突变难以被检测到,或多个候选变异都可能是驱动变异,这些都会使导致疾病发生的真正变异变得难以被检测到。此外,不了解遗传病因或对候选变异基因研究较少时,这种诊断会格外复杂。综合其它信息如RNA测序(RNA-seq)或网络分析,有利于检测可能的驱动变异中更重要的分子事件,或提供更多的证据来表明某个候选突变是导致疾病发生的原因。例如在对非典型范可尼贫血症的患者进行多组学分析时,DNA测序和基因组杂交微阵列芯片(aCGH)在识别最终被鉴定为驱动突变的位点是有效的,而RNA-seq可为一些最初不认为有致病性的变异提供致病证据,包括影响剪接模式的内含子变异和同义突变,以及导致转录本被削弱表达的非编码外显子及其上游区域的缺失。

最近,对大约50名患者的两项系统性研究均使用了RNA-seq和其它技术(图1),使得诊断率提高了约10%到35%。其中一项研究表明,全外显子组测序(whole-exomesequencing,WES)并没有为被诊断为肌营养不良症的(musculardystrophy,MD)患者找到驱动变异,但RNA-seq数据却鉴定出导致剪接异常的隐性剪接突变事件。特别的,即使对这些患者进行了全基因组测序(WGS)鉴定出这些变异,但由于它们多位于内含子区域或被预测为不会影响剪接,也可能不会被视为可诱发疾病的变异。由于测序成本快速降低以及可获得的信息量增加,RNA-seq可能会成为在临床实践中鉴定疾病病理与生理学的有力工具。同样地,随着蛋白质组学技术的成本越来越低和更容易获取,使其可用于鉴定诸如通过影响蛋白质稳定性或翻译后修饰的错义突变而引起的蛋白水平变化。蛋白质组学研究概述

图1鉴定可用于诊断罕见病的驱动变异。在Kremer和Cummings等人的工作中,采用了多组学方法助力于诊断尚未诊断的疾病。尽管现在外显子组和基因组测序能够在20%至50%的案例中有效地识别驱动变异(取决于不同的遗传和表型),但单一组学技术并不能诊断大多数的病例。(a,b)用来自患者组织的RNA-seq数据可以进行分子诊断,鉴定出异常表达、剪切或者是具有等位基因特异性表达的基因,从而帮助揭示疾病进展的分子机制。(c)在某些情况下,功能验证如蛋白质组可以更进一步助力疾病诊断。(生物AI插图素材获取和拼装指导,高颜值可定制在线绘图工具-第三版)

2Geneticarchitectureof



转载请注明地址:http://www.jiyingyang.com/jlsx/6110.html
  • 上一篇文章:
  • 下一篇文章: 没有了
  • 热点文章

    • 没有热点文章

    推荐文章

    • 没有推荐文章